
CS3230 Design and Analysis of Algorithms August 10, 2020

Problem Set 1

Lecturer: Divesh Aggarwal

Instruction

This tutorial contains two kinds of questions - questions marked with an asterisk (*) are part of
the assignment, and you need to submit your solutions to these questions; solutions to unmarked
questions need not be submitted, but you should still attempt them. Your assignment solution
will be graded. Submit your assignment solution by uploading to the LumiNUS. Solutions typeset
using LATEXare encouraged but not necessary. You may also submit scanned handwritten solutions,
but they must be clearly readable. Solutions that are not readable may receive only partial marks.
Late submissions will receive no marks. This assignment solution will be due by 11:59 pm, August
22, 2020 (Saturday).

Problem 1-1 (Recurrence and Recurrence)

Give asymptotic upper and lower bounds for each T (n). Assume that T (n) is constant for n ≤ 10.
Make your bounds as tight as possible and justify your answers. In the following, we mean bn/7c
and b

√
nc when we write n/7 and

√
n. Similarly, for n/2, n/4, n/8.

(a) T (n) = 7T (n/7) + 3
√
n.

(b) T (n) = T (n/2) + T (n/4) + T (n/8) + n.

(c) T (n) = T (
√
n) + 3.

Problem 1-2 (Tower of Hanoi)

The Tower of Hanoi is a well known mathematical puzzle. It consists of three rods, and a number
n of disks of different sizes which can slide onto any rod. The puzzle starts with all disks stacked
up on the 1st rod in order of increasing size with the smallest on top. The objective of the puzzle
is to move all the disks to the 3rd rod, while obeying the following rules.

� Only one disk is moved at a time

� Each move consists of taking one disk from top of a rod, and moving it on top of the stack
on another rod

� No disk may be placed on top of a smaller disk.

PS1, Page 1



A recursive algorithm that solves this problem is as follows: We first move the top n− 1 disks
from rod 1 to rod 2. Then we move the largest disk from rod 1 to rod 3 and then move the n− 1
smaller disks from rod 2 to rod 3. Using the symmetry between the rods, the number of steps that
this algorithm takes is given by the recurrence

T (n) = 2T (n− 1) + 1 ,

which can be solved to get T (n) = 2n − 1.

(a) Show that the above algorithm is optimal, i.e., there does not exist a strategy that solves the
Tower of Hanoi puzzle in less than 2n − 1 steps.

(b) Suppose the moves are restricted further such that you are only allowed to move disks to and
from rod 2. Give an algorithm that solves the puzzle in O(3n) steps.

(c) Suppose the moves are restricted such that you are only allowed to move from rod 1 to rod
2, rod 2 to rod 3, and from rod 3 to rod 1. Give an algorithm that solves the puzzle in
O((1 +

√
3)n) steps.

Problem 1-3 (*Counting Inversions) 10 Points

Let A[1 . . . n] be an array of pairwise different numbers. We call pair of indices 1 ≤ i < j ≤ n an
inversion of A if A[i] > A[j]. The goal of this problem is to develop a divide-and-conquer based
algorithm running in time Θ(n log n) for computing the number of inversions in A.

(a) (5 Points) Suppose you are given a pair of sorted integer arrays A and B of length n/2
each. Let C an n-element array consisting of the concatenation of A followed by B. Give an
algorithm for counting the number of inversions in C and analyze its runtime. Make sure you
also argue why your algorithm is correct.

(b) (5 Points) Give an algorithm (in pseudocode) for counting the number of inversions in an
n element array A that runs in time Θ(n log n). Make sure you formally prove that your
algorithm runs in time Θ(n log n) (e.g., write the recurrence and solve it.)
(Hint: Combine Merge Sort with part (a).)

Problem 1-4 (Counting Intersections)

Suppose you are given two sets of n points, one set p1, p2, ..., pn on the line y = 0 and the other set
q1, q2, ..., qn on the line y = 1. Create a set of n line segments by connecting each point pi to the
corresponding point qi. Describe and analyze a divide-and-conquer algorithm to determine how
many pairs of these line segments intersect, in O(n log n)time. [Hint:See the previous problem.]

Problem 1-5 (*Recursive Squaring) 10 Points

Describe a recursive algorithm that squares any n-digit number in O(nlog3 5) time, by reducing to
squaring only five (n/3 + O(1))-digit numbers.

PS1, Page 2



(Hint: What is (a + b + c)2 + (a− b + c)2? Consider using a2, c2, (a + b + c)2, (a− b + c)2 and
(· · · )2.)

For generous partial credit, describe a recursive algorithm that squares any n-digit number in
O(nlog3 6) time, by reducing to squaring only six (n/3 + O(1))-digit numbers.

PS1, Page 3


