
CS3230 Design and Analysis of Algorithms

Programming Assignment 0
(Ungraded)

Released August 17, 2020 8:00 AM

Due August 31, 2020 11:59 PM



1 What?

Over the course of this semester, you will encounter and learn a good number of algo-
rithms, data structures and problem-solving paradigms.

To ensure that you are well-equipped with not only the theoretical knowledge of these
concepts, but also the practical skills necessary to solve real problems, a number of pro-
gramming assignments will be given.

There will be two (2) programming assignments (not including this one, which is un-
graded) over the course of the semester, each carrying a weight of five percent (5%) of
the total marks allocated for this module.

Programming Assignment 1 will released on August 31, 8:00 AM and will be due on
October 5, 11:59 PM.

Programming Assignment 2 will released on October 5, 8:00 AM and will be due on
November 13, 11:59 PM.

Each of these programming assignments will consist of one or more algorithmic problems,
and your task is to write correct and efficient code to solve these problems.

2



2 Instructions

First, register an account on Codeforces. You may, but do not need to, use your NUS e-mail
when registering, and you may use an existing account if you already have one. You can
also use any available handle (username). This account will be used for all assignments,
so please remember your credentials or store them in your favorite password manager.

Second, fill out the quiz “Codeforces Handle” on LumiNUS with your Codeforces handle.
This will allow us to link your Codeforces account to you.

Third, while logged in, register as a participant in this Codeforces group. (Link: https://
codeforces.com/group/b0nFDNKNrz) This will give you access to the submission portals.

Once each assignment opens, you will be able to register for it and submit your solutions
for the problems there.

You may submit as many times as you want for any problem before the deadline passes.
The grading system is automated and you will immediately know your result; we will take
the best result out of all your submissions.

You may submit in any programming language supported by Codeforces, i.e. just about
every major programming language, including but not limited to C++, Java, Python 2 and
3, Perl, Ruby, Haskell, Go and Kotlin; see Codeforces for the full list.1

Unfortunately, because the grading system is automated and some languages are
inherently slower than others, we do not guarantee that it is possible to score full
marks using every programming language, even with the optimal algorithm. Our
model solutions will use C++, but reasonable leeway will be given to account for slower
languages.

1 Unfortunately, Codeforces does not support esoteric languages, so Malbolge, GolfScript, FiM++ etc. are
out of the window. You are free to try them for fun anyway!

3

https://codeforces.com/
https://luminus.nus.edu.sg/
https://codeforces.com/group/b0nFDNKNrz
https://codeforces.com/group/b0nFDNKNrz
https://codeforces.com/group/b0nFDNKNrz


Additionally, in the interest of fairness and practicality, no marks will be given to wrong
solutions, no matter how “close” to a correct solution they are (e.g. off-by-one errors, silly
bugs, “just” a few milliseconds too slow, etc.) You are highly encouraged to attempt the
problems early and seek guidance when you get stuck.

2.1 How Grading Works

Your code must read from standard input and print to standard output; the expected input
and output formats will be given in the problem. Do not print anything not explicitly
mentioned in the output format. This includes messages such as please input a and

b or the answer is:. The judging system is fairly primitive and will not be able to distin-
guish between these messages and your actual answer, so these will be marked incorrect.

Your code will be run against a number of secret test cases. Each secret test case will satisfy
the provided constraints and will be in the required format. If your code produces the
correct output within the given time and memory limits, your code is said to have passed
the test case.

There may be multiple groups of secret test cases with varying constraints (for example,
some groups may have smaller limits to allow for suboptimal solutions to score partial
marks). These groups and corresponding constraints will be indicated in the problem.
Your code needs to pass all the test cases in a given group to receive the marks allocated
to that group; your total marks will be the sum of all the marks from each group.

You can view which groups your code passed (but not which specific test cases your code
passed or failed) by clicking on the verdict on the submissions page.

The message 0.0 point(s) indicates that your code failed at least one test case in that
group; otherwise, all test cases were passed and you receive the corresponding marks for
that group. No other information is given about the failed test cases, so you will need to
think carefully about where your code might be wrong or insufficiently efficient.

Some problems may have different grading schemes. These will be clearly indicated.

To familiarize yourself with the system, you are encouraged to try the two ungraded exam-
ple problems given in this programming assignment. The same problems are reproduced
on the Codeforces submission portal.

4



3 Problems

A + B (70 marks)

Time limit: 1 second
Memory limit: 256 MB

You are given two integers a and b. Find their sum.

Input

The first and only line of input contains two integers, a and b.

Output

Output a single integer on a line by itself, the sum a+ b.

Scoring

For all groups, 1 ≤ a, b.

Group Marks a b

1 25 a ≤ 109 b ≤ 109

2 20 a ≤ 1018 b ≤ 1018

3 10 a ≤ 10200000 b = 1
4 15 a ≤ 10200000 b ≤ 10200000

Example

Input

351 69

Output

420

5



Shortest Way Home (30 marks)

Time limit: 2 seconds
Memory limit: 256 MB

Pete is the mayor of a small town.

In his town, there are n junctions, labeled from 1 to n, and m bidirectional roads. Each
road connects two distinct junctions, with the ith road connecting the junctions labeled ai
and bi and being di meters long.

Every day, Pete goes to work. His home is located at the junction labeled 1, and his office
is located at the junction labeled n. He always takes the shortest path to work.

Recently, he has felt that the commute takes too much time, and decided to request the
construction of one new road. He should choose two distinct junctions a′ and b′ and build
a bidirectional road between them which is some positive integer d′ meters long, such that
the length of the shortest path to work becomes strictly shorter than what it is currently.

He does not want to build a road between a pair of junctions that already have a road
between them, as that would be seen as wasteful (even if the new road might be shorter).

How many ways are there to build this new road? Two ways are different if the unordered
pair of junctions {a′, b′} the road connects are different or the length of the road d′ is
different.

Since this number can be quite large, output only the remainder after dividing it by 109+7.

Input

The first line of input contains two integers n and m, the number of junctions and the
number of existing bidirectional roads, respectively.

The next m lines of input each contain three integers. In particular, the ith of these lines
contains ai, bi and di, the junctions this road connects and the length of this road in meters,
respectively.

Output

Output a single integer on a line by itself, the number of ways to build the new road.

Since this number can be quite large, output only the remainder after dividing it by 109+7.

Scoring

For all groups,

� 2 ≤ n;

6



� 1 ≤ m ≤ min

(
400 000,

n(n− 1)

2

)
;

� 1 ≤ ai, bi ≤ n;

� ai 6= bi;

� 1 ≤ di ≤ 109;

� There is at most one road between any two junctions;

� It is possible to travel from Pete’s home to his office using the existing roads.

Group Marks n

1 8 n ≤ 50
2 6 n ≤ 2 000
3 16 n ≤ 200 000

Example

Input

4 4

1 2 6

2 3 2

2 4 3

3 4 4

Output

12

Note

The following image illustrates the example. The current shortest path is 1 → 2 → 4 with
a total length of 9:

7



We can add a road between junctions 1 and 3 with any positive integer length up to 4 and
get a strictly shorter path 1→ 3→ 4:

Alternatively, we can add a road directly between junctions 1 and 4 with any positive
integer length up to 8 and get a strictly shorter path 1→ 4:

Note that these are the only pairs of junctions not already connected by roads, so these are
the only new roads we need to consider. Therefore, the total number of ways is 12.

8



Warning

You may discuss the high-level conceptual ideas of the assignments with other students
taking this module this semester, or through the LumiNUS forums, but all the code you
submit must be your own.

Do not:

1. Post or discuss the assignments on Stack Overflow, Theoretical Computer Science
Stack Exchange, the comments on Terence Tao’s blog or any other website accessible
publicly, or with anyone except the professor, teaching assistants and students taking
this module this semester;

2. Share code snippets relating to the assignments with anyone;

3. Publish your code on a public GitHub repository or use online compilers like Ideone
which make your code public during the course of the semester;2

4. Copy code from online sources or your friends;

5. Engage in pair / triple / n-tuple, n ≥ 2 programming;

6. Perform any other action which violates the spirit of these rules.

When in doubt, ask us first.

We will conduct extensive checks for evidence of violations of these rules. If the preponder-
ance of the evidence suggests that the rules have been violated, sanctions may be levied,
including but not limited to: a zero for the assignment, failing the class, or escalation to
the Office of Student Affairs for further disciplinary action.

If we find considerable similarities between the submissions of multiple students, all af-
fected students are liable to receive sanctions. This includes not only the one(s) doing
the copying but also the one(s) who allowed his/her/their code to be copied, so exercise
due diligence to keep your code private.

Please, just do not cheat. If you cheat, we will have to do additional paperwork, and we
do not really want to do that.

2 If you like, you may publish your code after the CS3230 final has concluded.

9


	What?
	Instructions
	How Grading Works

	Problems

