
Asymptotics� Recurrence
relations
Analysis of an algorithm seeks to explore its termination�
correctness� time complexity� space complexity�

These ensure the algorithm has the desired functionality
�termination and correctness� as well as to predict the absolute
and relative performance for solving a given problem�

Time complexity depends on machine speed and input size and
content� Analysis of algorithm focuses only on the input size and
content factor�

Worse�case time� Maximum time needed among all possible
inputs of size n�

Asymptotic upper bounds

Let  and  be positive valued functions�

If there exists �  such that for all �

We say�

 is a set of functions which consists of all functions 
satisfying the above� We often abuse notation and say�

Asymptotic lower bounds

Let  and  be positive valued functions�

If there exists �  such that for all �

We say�

Asymptotic tight bounds

If  and � we say

Asymptotics using limits

Theorem Let  and  be positive functions and 

�� If � then  and 

�� If � where  is some positive number� then 
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�� If � then  and 

Common asymptotic growth functions

Function Name
� constant

log log
log

sublinear
linear

n log n
quadratic

cubic
polynomial
exponential

factorial

Note� For division� we always assume floor division for integers

Solving recurrence relations

Guess and prove by induction

Guess a close form solution

�� Compute value of function at a few points to form an
equation

�� Unfold recurrence by a few steps

Try to prove by induction

If failed� use the attempt to guide in refining the solution

Example

Given the following

Compute a few values of �

We can guess that T�n� seems to be

Proof�

We can attempt to guess by “unrolling” the recurrence�

✔

✔



We can guess that

Proof�

For k � ��

For k � i�

For k � i � ��

Given that�

Substituting�

The above equation is correct� and when k � n�

Example� Fibonacci

The recurrence is as follows

The sequence is increasing and thus�

F is implied to be exponential in n� Assume  for some
positive real numbers  and � To prove by induction� we want�

Solving for the root� taking into account that  is positive� we get�

✔

✔



Which is also the golden ratio � We take the lower bound of the
ans 

Show using induction on n that

Taking the right side� for n � �

Assume that  for all  where 

Remember from solving the root equation of � we
obtain the value of � thus�

Taking the left side� for n � �

Assume that  for all  where 

Example� Merge Sort

We shall assume n is a power of � for simplicity� Assuming
constant �

If we unfold this recurrence� we will obtain

We can guess that 

Proof�

For k � ��

✔

✔

✔

✔

✔



For  where 

For �

For maximum value 

Thus� we can see that 

To prove that � we take a constant  for 

The steps for proving will be the same as above�

Example� Harder example

Assume  for some integer � Consider the following
recurrence

Assuming for a constant �

Unfolding this we get�

We can guess�

For �

For �

For �

Our guess is correct so to get the equation� we need to form an
equation with  where 

✔

✔

✔



so substituting for 

Thus� we can see that �

Repeating this with the following where  is a constant such that

will give you the proof for  and thus�

Divide and conquer recurrences� Recursion
Trees

Many divide and conquer algorithms give a running�time
recurrence of the form�

In merge sort� � � 

We will again assume  and  are integers� and  is a power of �
with � It will later be shown the assumption is not
necessary� We also assume

Unfolding this recurrence�

By observing the pattern� we can come up with the following
equation

Exercise� Prove the above solution

Our guess�



When �

Take  for 

For 

With the following equation

Subbing the above into our equation for 

In the last step�  is the last term in 

Thus� the equation we have guessed is correct�

To prove that � we assume for a

positive constant C�

The base case  is proven as it is  and we only have to
find  greater than the constant�

Taking �

Taking  where 

Taking �

✔

✔

✔



Thus� the equation holds true� Finally� subbing k � L � �

Looking at the term  where �

Since the last term of the summation is � it
dominates the other term�

The same can be shown for lower bound as well with the initial
assumption of

where 

Masters Theorem

The recurrence  can be solved as follows
for all �large enough� n�

If  for some � then 

If  for some � then 

If  then 

Exercise� First Theorem

If  for some � then 

For all n� we have � This means that in the
expansion of the formula � the term with 
dominates the other terms�

From this� we can conclude that

The term on the right is a geometric progression� with the ratio 
being � recall that  and the sum can then be obtained as
follows



Also we can prove the lower bound with

Thus� 

Exercise� Second Theorem

If  for some � then 

This means that in the expansion of the formula �
the term with  dominates the other terms�

From this� we can conclude that

Again� this leaves us with a geometric progression where 
where 

We can prove the lower bound with the following

Thus� 

Exercise� Third Theorem

If  then 

This means that in the expansion of the formula �
all terms are the same�

From this� we can conclude that

Thus� 

Recursion Tree approach



Consider the following

Drawing out the recursion tree� we can observe that the total
contribution at each level is n� The branch that decays by  each
time decays the fastest while the branch that decays by  each
time decays the slowest� Here� we get the number of levels as
between  and � Since each level takes  work
and the number of levels is bounded by � the solution
should be 

Exercise

Prove the above bound on time complexity

With our guess of � we must prove that 
 for some positive constant �

We have the equation

which can be expressed with a constant 

Proof�

Assume that  is true for 

We can see that if the term � then 
�

We can just take  so now � Continuing
from our previous equation

Transformations

The methods above may not be able to solve recurrence relations
directly� but we can perform a transformation that can change
the relation to something we already know�



Domain transformation�  for some
appropriately chosen function �
E�g�  where �

Range transformation�  for some
appropriately chosen function �
E�g�  where �

Example� Unsimplified Mergesort

Consider the recurrence relation of merge�sort without any
simplifying assumption�

We can overestimate the time bound a little as follows�

With transformation� we can obtain the recurrence in a more
standard form which we have seen� 

We make the domain transformation  where  is
to be determined which gives us

We want the term such that

Choosing  such that  will give us the
following

Alternative method

Instead of domain substitution� we can reason with the
following�

Let 

We know the above is true as  if  is a power
of �� In this case�  which is a power of ��

The term  as  which simplifies to

Example

We can see that substituting  gives us

Which suggests that a domain transformation of 
would work� giving us



This almost resembles the Fibonacci recurrence and we can get
the exact form with a range transformation 

We can see that we can remove the constant term if 

This fits our previously solved Fibonacci sequence and we get

which implies �via �

Exercise

Solve the following recurrence�

HINT� What is 

Unfolding the recurrence

We can guess that the equation is something like

for 

Taking the case �

For the case  for 

Now for � the equation would be

To prove the above from � we make use of the original
equation 

Thus� the equation  is true for 

Taking 

✔

✔



Claim  for some postive constant  for all 

Assuming that the above claim holds true for 

Claim  for some postive constant  for all 

Assuming that the above claim holds true for 

Thus� we can show that 


