
Asymptotics� Recurrence
relations
Analysis of an algorithm seeks to explore its termination�
correctness� time complexity� space complexity�

These ensure the algorithm has the desired functionality
�termination and correctness� as well as to predict the absolute
and relative performance for solving a given problem�

Time complexity depends on machine speed and input size and
content� Analysis of algorithm focuses only on the input size and
content factor�

Worse�case time� Maximum time needed among all possible
inputs of size n�

Asymptotic upper bounds

Let and be positive valued functions�

If there exists � such that for all �

We say�

 is a set of functions which consists of all functions
satisfying the above� We often abuse notation and say�

Asymptotic lower bounds

Let and be positive valued functions�

If there exists � such that for all �

We say�

Asymptotic tight bounds

If and � we say

Asymptotics using limits

Theorem Let and be positive functions and

�� If � then and

�� If � where is some positive number� then

http://localhost:1313/notes/design-and-analysis/asymptotics-recurrence-relations/

�� If � then and

Common asymptotic growth functions

Function Name
� constant

log log
log

sublinear
linear

n log n
quadratic

cubic
polynomial
exponential

factorial

Note� For division� we always assume floor division for integers

Solving recurrence relations

Guess and prove by induction

Guess a close form solution

�� Compute value of function at a few points to form an
equation

�� Unfold recurrence by a few steps

Try to prove by induction

If failed� use the attempt to guide in refining the solution

Example

Given the following

Compute a few values of �

We can guess that T�n� seems to be

Proof�

We can attempt to guess by “unrolling” the recurrence�

✔

✔

We can guess that

Proof�

For k � ��

For k � i�

For k � i � ��

Given that�

Substituting�

The above equation is correct� and when k � n�

Example� Fibonacci

The recurrence is as follows

The sequence is increasing and thus�

F is implied to be exponential in n� Assume for some
positive real numbers and � To prove by induction� we want�

Solving for the root� taking into account that is positive� we get�

✔

✔

Which is also the golden ratio � We take the lower bound of the
ans

Show using induction on n that

Taking the right side� for n � �

Assume that for all where

Remember from solving the root equation of � we
obtain the value of � thus�

Taking the left side� for n � �

Assume that for all where

Example� Merge Sort

We shall assume n is a power of � for simplicity� Assuming
constant �

If we unfold this recurrence� we will obtain

We can guess that

Proof�

For k � ��

✔

✔

✔

✔

✔

For where

For �

For maximum value

Thus� we can see that

To prove that � we take a constant for

The steps for proving will be the same as above�

Example� Harder example

Assume for some integer � Consider the following
recurrence

Assuming for a constant �

Unfolding this we get�

We can guess�

For �

For �

For �

Our guess is correct so to get the equation� we need to form an
equation with where

✔

✔

✔

so substituting for

Thus� we can see that �

Repeating this with the following where is a constant such that

will give you the proof for and thus�

Divide and conquer recurrences� Recursion
Trees

Many divide and conquer algorithms give a running�time
recurrence of the form�

In merge sort� � �

We will again assume and are integers� and is a power of �
with � It will later be shown the assumption is not
necessary� We also assume

Unfolding this recurrence�

By observing the pattern� we can come up with the following
equation

Exercise� Prove the above solution

Our guess�

When �

Take for

For

With the following equation

Subbing the above into our equation for

In the last step� is the last term in

Thus� the equation we have guessed is correct�

To prove that � we assume for a

positive constant C�

The base case is proven as it is and we only have to
find greater than the constant�

Taking �

Taking where

Taking �

✔

✔

✔

Thus� the equation holds true� Finally� subbing k � L � �

Looking at the term where �

Since the last term of the summation is � it
dominates the other term�

The same can be shown for lower bound as well with the initial
assumption of

where

Masters Theorem

The recurrence can be solved as follows
for all �large enough� n�

If for some � then

If for some � then

If then

Exercise� First Theorem

If for some � then

For all n� we have � This means that in the
expansion of the formula � the term with
dominates the other terms�

From this� we can conclude that

The term on the right is a geometric progression� with the ratio
being � recall that and the sum can then be obtained as
follows

Also we can prove the lower bound with

Thus�

Exercise� Second Theorem

If for some � then

This means that in the expansion of the formula �
the term with dominates the other terms�

From this� we can conclude that

Again� this leaves us with a geometric progression where
where

We can prove the lower bound with the following

Thus�

Exercise� Third Theorem

If then

This means that in the expansion of the formula �
all terms are the same�

From this� we can conclude that

Thus�

Recursion Tree approach

Consider the following

Drawing out the recursion tree� we can observe that the total
contribution at each level is n� The branch that decays by each
time decays the fastest while the branch that decays by each
time decays the slowest� Here� we get the number of levels as
between and � Since each level takes work
and the number of levels is bounded by � the solution
should be

Exercise

Prove the above bound on time complexity

With our guess of � we must prove that
 for some positive constant �

We have the equation

which can be expressed with a constant

Proof�

Assume that is true for

We can see that if the term � then
�

We can just take so now � Continuing
from our previous equation

Transformations

The methods above may not be able to solve recurrence relations
directly� but we can perform a transformation that can change
the relation to something we already know�

Domain transformation� for some
appropriately chosen function �
E�g� where �

Range transformation� for some
appropriately chosen function �
E�g� where �

Example� Unsimplified Mergesort

Consider the recurrence relation of merge�sort without any
simplifying assumption�

We can overestimate the time bound a little as follows�

With transformation� we can obtain the recurrence in a more
standard form which we have seen�

We make the domain transformation where is
to be determined which gives us

We want the term such that

Choosing such that will give us the
following

Alternative method

Instead of domain substitution� we can reason with the
following�

Let

We know the above is true as if is a power
of �� In this case� which is a power of ��

The term as which simplifies to

Example

We can see that substituting gives us

Which suggests that a domain transformation of
would work� giving us

This almost resembles the Fibonacci recurrence and we can get
the exact form with a range transformation

We can see that we can remove the constant term if

This fits our previously solved Fibonacci sequence and we get

which implies �via �

Exercise

Solve the following recurrence�

HINT� What is

Unfolding the recurrence

We can guess that the equation is something like

for

Taking the case �

For the case for

Now for � the equation would be

To prove the above from � we make use of the original
equation

Thus� the equation is true for

Taking

✔

✔

Claim for some postive constant for all

Assuming that the above claim holds true for

Claim for some postive constant for all

Assuming that the above claim holds true for

Thus� we can show that

