
Recursive Algorithms
Reductions

Reduction is the single most common technique used in
designing algorithms� Reducing one problem from problem X to
problem Y means writing an algorithm for X that uses an
algorithm for Y as a black box or subroutine�

Simplify and Delegate

Recursion is a powerful kind of recursion and can be described
loosely as

�� If the given instance can be solved directly � solve directly

�� Otherwise� reduce to one or more simpler instances of the
same problem

�� Imagine someone else is solving the simpler problem

Proof of correctness by induction

The recursive reductions must lead to an elementary base case
that can be solved by some other method or it will loop forever�

Reduce to one or more smaller instances of solving the exact
same problem�

E�g� Cannot make recursive call to multiplying two integers when
the original problem wants to compute square of a number

Towers of Hanoi

How many moves does it require to transfer n disks of different
sizes from rod � to rod � with the following rules

�� Move � disk at a time
�� Never place a larger disk on a smaller disk

No solution for � rods

Recursion

There must be a step where the biggest disk n moves to rod ��

What must happen before that?

All disks smaller than disk n must be moved to Rod �� Rod � will
now have n�� disks in the same fashion that Rod � had n disks
stacked up� Notice that this is a smaller instance of the same
problem�

What must happen after this?

This reduces to a problem of moving all n�� disks from Rod � to
Rod � using Rod �� whereas previously� it was moving n disks
from Rod � to Rod � using Rod ��

Now� we have an idea to solve the problem via recursion� We
don’t have to tell the algorithm how to move the n�� disks before
moving the nth disk as this is taken care of by recursion�
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To prove the recursion� we first look at the base case where 

Base case� Move � disks from Rod � to Rod � using Rod �

As you can see� there is nothing to do at this step and the base
case is solved�

Algorithm

 which is to move  disks from Rod � to Rod �
using Rod ��

If 

��  � Move  disks from Rod � to
Rod �

�� Move disk n from Rod � to Rod �
��  � Move the remaining disks on Rod �

to Rod �

Let  denote the number of moves required to transfer 
disks � Running time of algorithm

We have already seen the solution to the recurrence is

Exercise� Show that this algorithm takes the fewest possible
moves�

��PROBABLY NOT LEGIT��

Claim� 

Base case� 

��PROBABLY NOT LEGIT��

��Lecture Proof��

Claim� Assume  exists where  is the number of steps the
best possible algorithm takes in moving  disks from any rod to
another�

As shown earlier� to solve Hanoi� we must first move  disks
to Rod � � �� before moving the th disk to Rod � ����
Afterwords� it is a matter of calling the same algorithm on the
disks in Rod � to shift them to Rod � � ��

Now we know the form  reduces to  and
hence�

Proof by Induction�

When � there is no disk to be moved and � steps are
needed� � 

✗

✔



Assume that  for 

By induction�  where  is the best possible
algorithm for this problem� Showing that the lower bound for the
problem is  steps�

��Lecture Proof��

Mergesort

Mergesort splits the array into � and the same mergesort
algorithm is called on the two smaller arrays� After receiving two
sorted arrays� it scans simultaneously through the two lists�
adding the smaller of the two�

The recurrence relation is

Solution has been shown previously as 

Quicksort

�� Choose a pivot element from array
�� Partition array into � subarray� One smaller than the pivot�

the pivot� and one larger than the pivot
�� Recursively quicksort the first and last subarray

The partition returns the rank r of the pivot element chosen as
we know the number of elements smaller than it�

Analysis

If we managed to choose the pivot to be the median element of
the array� we would have � giving us

Pattern

Mergesort and Quicksort follow the general pattern of divide and
conquer

�� Divide the given instance into several smaller instance of
the exact same problem

�� Make a recursive call to the same problem for smaller
instances

�� Combine the solutions for the smaller instances into the
final solution for the given instance

In Mergesort� the Divide step takes  and Combine takes 

In Quicksort� the Divide step takes  and Combine takes 

Algorithm Divide Combine
Mergesort
Quicksort

✔



Linear Time Selection

Problem� Selecting the k�th smallest element in an n�element
array

Idea� Sort and output k�th smallest � 

Better Idea� Modify Quicksort to give Quickselect that runs the
partition step and only recurse on relevant subarray

Analysis

Letting  denote the length of the recursive subproblem�

This means that if we always choose the largest or smallest
element in the array� the recurrence will simplify to 

 which implies 

Find the 4th smallest element (6). In this case n = 5 
[3,6,2,9,5] 
Suppose we select element 2, our subarrays will be 
Smaller: [] 
Pivot: 2 
Larger: [3,6,9,5] 
We have to recurse on the larger array of size n-1 

We can see that it would be a linear path of selecting either the
largest / smallest element with  work done every time for 
steps�

Good Pivot

If the pivot is chosen such that the subproblem that the
algorithm calls recursively has size  for some constant �
then the time complexity is given by the recurrence

By Master’s Theorem with � �  for
some constant 

Thus� 

Goal� Find a set of elements of size  for some constant 
in  time such that the set contains the k�th smallest
element�

Choosing a good pivot

Idea by Blum�Floyd�Pratt�Rivest�Tarjan

�� Partition input set into groups of � elements each arbitrarily�
If n is not multiple of �� add a few  elements and remove at
the end�

�� Sort each group and find the median ��rd smallest element�

�� The pivot is the median of these medians i�e  smallest
element among  elements� We will recursively call the
Quickselect algorithm on the medians of the set to find the
median�



Walkthrough

Warning This portion mostly assumes  is a multiple of � which is
not recommended by the professor and I also drop some
constants�

Suppose we have  elements where  is a multiple of ��

We will get  number of sets which we will call �

We will sort all  sets and take the median from each set� giving
us  medians�

Out of these  medians� we sort them and select the median of
medians which we will call �

By selecting the median � we will have  sets �assume  is
odd� with medians smaller than  and another  sets with
medians larger than �

For the  sets with medians smaller than � they each contain
� elements smaller than  which will give us  elements
smaller than � We also need to add the � elements in the set
that  is in which will give us  elements in total�

We can reason the same for elements larger than  as well�

Now� the rank of the pivot  is between  and 

So the recursive call is made to 
elements

The algorithm requires  before making the
recursive call instead of the desired 

More formally� the recurrence is

where  is the smallest integer greater than n that is a
multiple of �� Here�  is the time required to find the
median in your sets of � elements�  is the time required to
partition the array after finding the pivot�  is the time
required to recurse on the larger subarray after partitioning�

Analysis

Using domain substitution� � we get for some
constant 

This gives us a recursion tree and summing up the work done at
each level�

Level �� 

Level �� 

Level �� 

Notice that this is a geometric series with ratio 



Claim�  for 

At � the time taken would be constant so it is true�

Assuming the statement  is true for 

Question� Groups of �

�  sets with median smaller than  with each set
containing � elements smaller than � This gives us 
elements smaller than  and we have to add the � element
smaller than  in the set that  was in� This will give us

Here� we get

where  is the smallest integer greater than n that is a
multiple of ��

We use domain substitution � giving us

This gives us a recursion tree where if we sum up the levels we
get

Level �� 

Level �� 

Level �� 

Given the longest branch is of  height� we most likely have

Question� Groups of �

�  sets with median smaller than  with each set
containing � elements smaller than � This gives us 
elements smaller than  and we have to add the � element
smaller than  in the set that  was in� This will give us

And we get rank  in range of 

We get the recurrence relation

✔



where  is the smallest integer greater than n that is a
multiple of ��

We use domain substitution $S�n� � T�n����� giving us

This gives us a recursion tree where if we sum up the levels we
get

Level �� 

Level �� 

Level �� 

Notice that this is a geometric series with ratio 

Question� Groups of k where k is odd

�  sets with median smaller than  with each set
containing  elements smaller than �

This gives us  elements smaller than  and we have to
add the  elements smaller than  in the set that  was
in� This will give us

Ignoring constants will give us

If we very loosely convert this into the largest possible ratio we
get

That is to say 

Each level’s work done can be� again loosely� represented as

Level �� 

Level �� 

For the geometric series to converge� we must have 
and therefore� 

Example� Integer Multiplication

The straightforward algorithm for multiplying two n�digi integers
requires  multiplications and  additions and runs in 

We want to try to get a recursive algorithm by exploiting



Think about splitting an integer into � parts and multiplying the
smaller parts instead�

Given n = 8 and two numbers 12345678 and 87654321 
 
This will give us 
a = 1234 
b = 5678 
c = 8765 
d = 4321 
 
Now we need 
a*c = 1234 * 8765 
a*d = 1234 * 4321 
b*c = 5678 * 8765 
b*d = 5678 * 4321 
 
Where each can be recursed as two numbers where n = 4 

This gives us the recurrence relation

And using Master’s Theorem� we get 

This offers � improvement but we can observe the following
identity�

Now� after computing  and � we only have to compute one
more term  in order to obtain � This reduces
the number of multiplications we have to do by ��

In � we first multiply  and then  which gives us two
multiplications�

In � we already have  and  from
computation so we only need to add  and  which is
cheaper than multiplication� Finally� only one more multiplication
is needed for 

This will give us

By Master’s Theorem� 

Exercise

Give an alternate algorithm for squaring an n�digit integer that
makes recursive calls to a squaring algorithm �Don’t use the
above�

An integer with  digits can be represented as the following
where 

Squaring this will give us

Using the identity



We can obtain  from the squares of �  and  which
again leads us to only � multiplications�

Number of digits in  � 

Number of digits in  � 

Thus the max number of digits we have to recurse on is 

The recurrence relation will be as follows

Taking the domain substitution 

Master’s Theorem implies 

Exponentiation

Given a number  and a positive integer � we want to compute 
�

Suppose we multiply  by itself  times� this would require 
multiplications or  multiplications�

Note�  which is � multiplications

Here� we bound the number of multiplications by 

When  is odd� we need to find  which gives us  as
well as multiply it by itself which will give us 

When  is even� we need to find  which gives us �
multiply it by itself which will give us  and also multiply it by 
which gives us �

Thus� 

By Master’s Theorem� we get 

Claim�  for  and some constant 

When �  and  and the statement is true
for 

Assume  for �

Note This cost is strictly in terms of number of multiplications�
the actual cost depends on the cost of multiplication�

✔


